Researchers identify genetic mutation for rare cancer

Researchers at the University of Michigan Comprehensive Cancer Center sequenced the tumour’s genome through a new program called MI-ONCOSEQ, which is designed to identify genetic mutations in tumours that might be targeted with new therapies being tested in clinical trials.

The sequencing also allows researchers to find new mutations. In this case, an unusual occurrence of two genes – NAB2 and STAT6 – fusing together. This is the first time this gene fusion has been identified.

"In most cases, mutations are identified because we see them happening again and again. Here, we had only one case of this. We knew NAB2-STAT6 was important because integrated sequencing ruled out all the known cancer genes. That allowed us to focus on what had been changed," says lead study author Dan R. Robinson, research fellow with the  Michigan Center for Translational Pathology.

Once they found the aberration, the researchers looked at 51 other tumour samples from benign and cancerous solitary fibrous tumours, looking for the NAB2-STAT6 gene fusion. It showed up in every one of the samples.

"Genetic sequencing is extremely important with rare tumours," says study co-author  Scott Schuetze, M.D., associate professor of internal medicine at the U-M Medical School. "Models of rare cancers to study in the laboratory are either not available or very limited. The sequencing helps us to learn more about the disease that we can use to develop better treatments or to help diagnose the cancer in others."

The NAB2-STAT6 fusion may prove to be a difficult target for therapies, but researchers believe they may be able to attack the growth signalling cycle that leads to this gene fusion.

"Understanding the changes induced in the cell by the NAB2-STAT6 gene fusion will help us to select novel drugs to study in patients with advanced solitary fibrous tumours. Currently this is a disease for which there are no good drug therapies available and patients are in great need of better treatments," Schuetze says.

No treatments or clinical trials are currently available based on these findings. Additional testing in the lab is needed to assess the best way to target NAB2-STAT6. The gene fusion could also potentially be used to help identify solitary fibrous tumours in cases where diagnosis is challenging.The University of Michigan Health System